ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRICAL AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
THEORY of FIELD ORIENTATION CONTROL	ECE-608	SPRING	3 + 0	3	10

Prerequisite Courses NONE

Туре	Selective			
Language	English			
Coordinator	Prof. Irfan Alan			
Instructor	Prof. Irfan Alan			
Adjunt	None			
Aim	To understand the principles of vector and field orientation control in AC Machines. To investigate the analysis of the machines in different reference frames. To realize the field orientation control of AC machines via computer simulations. To follow the publications related to the subject.			
Learning Outcomes	 To be able to come to a level to understand and apply the theory of field orientation control in AC machines in the real control of an ac machine To learn to simulate the operation and analyze in detail the field oriented controlled AC machines in different reference frames by means of a simulation program To be able to investigate, prepare and make a presentation about various field orientation techniques applied in literature To be able to produce original ideas to come up with a better field orientation controller technique by analyzing and making brain storming activity on the various field orientation techniques applied in literature 			
Course Content	 Vector Control and Field Orientation in Synchronous Machines. Current and Torque Control via CSI and PWM Drives. Torque Control via Current Regulated PWM Drive. Vector Control and Field Orientation in Induction Machines. Independent Flux and Torque Control. Induction Machine Flux and Torque Control via CSI, PWM, and CRPWM Drives. Slip Calculator and Its Errors. Direct and Indirect Field Orientation. Dq Model of Induction Machines. Stator, Rotor, Synchronous and Arbitrary Reference Frames and Induction Machine Models in Various Reference Frames. Complex Vector Notation. Digital Computer Simulation and Analysis of Induction Machines by means of Developed Models. Paper Reviews on the Subject. Evaluation of Selected Studies Carried on Reviewed Papers by means of Software Simulations. 			

WEEKLY TOPICS AND PRELIMINARY STUDY					
Week	Торіс	Preliminary Study			
1	Paper reviews on the subject	The relevant book chapters and materials from the literature			
2	Vector control and field orientation in synchronous machines.	The relevant book chapters and materials from the literature			
3	Current and torque control via CSI and PWM drives.	The relevant book chapters and materials from the literature			
4	Torque control via current regulated PWM drive.	The relevant book chapters and materials from the literature			
5	Vector control and field orientation in induction machines. Independent flux and torque control.	The relevant book chapters and materials from the literature			

6	Induction machine flux and torque control via CSI, PWM, and CRPWM drives.	The relevant book chapters and materials from the literature
7	Slip calculator and its errors.	The relevant book chapters and materials from the literature
8	Direct and indirect field orientation.	The relevant book chapters and materials from the literature
9	Stator, rotor, synchronous and arbitrary reference frames and induction machine models in various reference frames.	The relevant book chapters and materials from the literature
10	Complex vector notation. Complex vector models of induction machine.	The relevant book chapters and materials from the literature
11	MIDTERM EXAM	
12	Digital computer simulation and analysis of induction machines by means of developed models.	The relevant book chapters and materials from the literature
13	Evaluation of selected studies carried on reviewed papers by means of software simulations	The relevant book chapters and materials from the literature
14	Student presentations on the reviewed literature and about the simulations made	The relevant book chapters and materials from the literature
15	Student presentations on the reviewed literature and about the simulations made	The relevant book chapters and materials from the literature
16	FINAL EXAM	

SOURCES					
Lecture Notes	Lecture notes and slides				
Other Sources	 Course Textbook: "Vector Control and Dynamics of AC Drives", D.W: Novotny and T.A. Lipo, Clarendon Press, Oxford, 1996. Additional Materials: Univeristy of Wisconsin-Madison ECE 411 Ders Notları. Univeristy of Wisconsin-Madison ECE 711 Ders Notları. ACSL Programı ve Programlama Kılavuzu. Konu ile ilgili yayınlar. 				

COURSE MATERIALS SHARING		
Documents Lecture notes and slides		
Homeworks Students will be given at least total of 7 analytical or simulation homeworks		
Exams	1 Midterm and 1 Final Exam	

EVALUATION SYSTEM					
SEMESTER STUDY	NUMBER	CONTRIBUTION			
MIDTERM	1	30			
Homework	7	35			
FINAL EXAM	1	35			
TOTAL		100			

Course Category			
Sciences and Mathematics	50%		
Engineering	50%		
Social Sciences	0%		

RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS				
No Program Qualifications	Contribution Level			

		1	2	3	4	5
1	Skills of using Mathematical, Science and Engineering Knowledge in Advanced Research					x
2	Skills of analyzing, designing and/or implementing an original system which will solve an Engineering Problem					x
3	Skills of using software, hardware and modern measurement instruments for advanced research in one's field of expertise					x
4	Skills of planning, detailing and doing independent research					x
5	Skills of following literature, making and/or listening technical presentation, writing academic level article					x
6	Skills of finding original ways by means of innovative thinking and questioning					x

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE					
Activities	Number	Duration (Hours)	Total Work Load		
Course Length (includes exam weeks: 16x total course hours)	16	3	48		
Out-of-class Study Time (Pre-study, practice)	16	5	90		
Internet search, library work, literature search	16	3	48		
Homework	7	13	91		
Midterm	1	15	15		
Final Exam	1	20	20		
Total Work Load			312		
Total Work Load / 30			312/30		
Course ECTS Credit			10		